follows from (3.1).

Thus the corresponding stress field (2.3) for an element ¢ & H satisfied theequilibrium equations (1.1}
and the boundary conditions (1.2) in the generalized sense (3.4). In particular, if ¢ & M C H, then Eq. (1.1)
and the boundary conditions (1.2) are satisfied in the usual sense for the stresses (2.3).

We note in conclusion that the results obtained are valid for the entire region Q occupied by the me-
dium, independently of the distribution of rigid and plastic regions. A proof of the uniqueness of the stress
field only for those parts of the body in which the deformation rates are different from zero is given in [2].

LITERATURE CITED

L. M. Kachanov, Foundations of the Theory of Plasticity, American Elsevier (1971).

D. D. Ivlev, The Theory of Ideal Plasticity [in Russian], Nauka, Moscow (1966).

G. Fikera, Existence Theorems in Elasticity Theory [Russian translation], Mir, Moscow (1974).

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer —Verlag
(1971).

B g o

PROBLEM OF PURE SHEAR OF A
VISCOPLASTIC MEDIUM BETWEEN TWO
NONCOQOAXIAL CIRCULAR CYLINDERS

A. V. Rezunov and A. D. Chernyshov UDC 539.374

The problem of the flow of a viscoplastic material between two noncoaxial circular cylinders is dig~
cussed. An approximate solution is found with the help of the iterative method described in [1, 2]. Analytic
methods of solving similar problems are discussed in [3~4]. An approximate solution is found in [6, 7] with
the use of iterative methods [8].

1. The problem is solved in a cylindrical coordinate system. The axis Oy is directed parallel to the
generating lines of the cylinders, the contours of whose transverse cross section are specified by the equa~
tions Ry = Ry(¢) and R; = Ry(¢). The outer cylinder is fixed, and the inner one moves in the positive direc~
tion of the axis Oz with velocity v, In this case only one velocity component vy = v(r, ¢) is different from
zero. In the flow under discussion the components of the deformation rate tensor are of the form

1 av 1 ov
€rp =gy =€, = €rg =0, €re = 5= oz = 3 3 (1.1)

We will write the relation between the components of the stress tensor ¢j; and the components of the

deformation rate tensor ejj for a viscoplastic medium with the Miesz plasticity condition in the form [9]

(v Y
Gu*(l/eklekl“%-%t €;5— ;s (1.2)

where p; is the hydrostatic pressure, k is the yield point, and u is the viscosity coefficient. Substituting
(1.1) into (1.2), we obtain

Opp = Opg = Oz = —Py, Opp = 07
_ kH-py dv _ k+py ov o / a1\ 1 vV
o=t s =50 =V ) .3)
We write the equilibrium equations
op, 9p; da,, 1 86, G, 9p
w0 Tty T m L.4)

Voronezh, Vinnitsa. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp.
135-141, July-August, 1979. Original article submitted May 19, 1978.
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- It follows from (1.4) that 8p;/6z = p = const. Let us convert to dimensionless quantities. In order td
do this, we will refer the stresses to the yield point 'k, linear dimensions to the quantity h=max Ry(¢),
vy in the pressure p to the quantity k/h, ¢

After substitution of (1.3) into (1.4) we arrive at the equilibrium equation in dimensionless form

¢Q r '
St heall o

L'rr ~— 20, w0+ Vbt 20, -2
H(v,, v, v ) ¢re Pq-r r —p =0, (1.5)

where H = uv,/kh; Vo = av/o¢, and v = 9v/or.
The boundary conditions in the problem under discussion are the following:
Ul=roi@ =1, ¥fr=rie= 0. (1.6)
2. We will briefly describe the essence of the method proposed in [1, 2] for obtaining an approximate

solution of the boundary-value problem (1.5) and (1.6). We will switch in Eq. (1.5) from the variables r, ¢ to
the new variables ¢, ¢ with the help of the transformation

¢ = o, & = f(r, 7). @.1)

We assume that the transformation (2.1) is selected so that it is possible o neglect in the new variables
derivatives of v with respect to ¢ and mixed derivatives in comparison with the remaining terms. Then we

obtain for the quantity v a linear ordinary second-order differential equation with variable coefficients
. 2
880 — 285 b ok 248

2 ,3/2
e
which ¢ enters as a parameter. Let us also assume that the transformation (2.1) is such that sgn (vg) =1 and
the boundary conditions are of the form

(Ez—i—g )DESTH(tr : §__.3,22+§_:_)v§_+

sgn (vz)—p =0, (2.2)

SR

Vlimo = 0, Dlgmy = 1. 2.3)

Having solved the boundary-value problem (2.2) and (2.3), we find the first approximate solution v =
v\ = (£, ). Let us substitute here the expression for ¢ from (2.1)

v = F((r, ¢ @) = Julr, @) 2.4)

Now denoting v'¥ by £ in (2.4), we solve the problem (2.2) and (2.8) with the replacement of vari-
ables ¢ = @, and £V = £, (¢, ») in order to find the second iteration. We find the subsequent iterations sim-
ilarly.

3. We will apply this method to solve the problem (1.5) and (1.6) in the case in which p = 0; the con-
tours of the transverse cross section of the cylinders are specified in the form

Ry(p) = 1, Ry(q) = —e cos (9) + VR®*— & sin¥(yp), 3.1)

where & is the distance between the axes of the cylinders and R is the dimensionless radius of the outer
cylinder, The null approximation was taken to be

V=—g tl———g~y Ini{g
Hln| %~ 0
(=)

Equation (3.2) corresponds to the exact solution for R; = const and Ry = const. In the case (3.1) v(r,
@) is an even function of ¢.

— R R —R
r a 1 o FH ln( r ) 3.2)

Therefore, it is sufficient to find a solution in the rectangle D= (0 <¢< 1,0 = ¢ = 7).
The solution in the i~th approximation was found in tabular form
v(n:{zxi) 0<CEN, 0N, (3.3)

at the nodes of a grid w = wg X wp = (& @), & = khy, O =k = Ng#i = ihy, 0 =i =Nj},hy = 7/Ng, hy =
1/N;, by solving the problem (2.2) and (2.3) with fixed ¢; onthe basis of a2 procedure of reducing it to two
Cauchy problems [10].
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For fixed @j the data of the tables (3.3) were converted with the help of interpolation to the values of
the table .

EOZ{E?U') 0<k<N0’0<]‘<N1}7 (3.4:)

defined at the nodes of the grid = 2¢xwe = {(v", ¢7), vi’ = khy, 0 = k = Ny, ¢ = Ihy, 0 =1 =< Ny},
where Q= {vi" = khg, k= 0,1,...,No, by = 1/Ny}. In order to obtain the subsequent approximations it is
necessary to differentiate the solution obtained at the preceding step of the iterative process. To this end,
the solution in the form of the table (3.4) was replaced by a solution in the form

M
&= 2 a, (VW) cos (kg), M Ny (3.5)
In order to find the coefficients ak(v‘i) ), the values of the table (3.4) were smoothed by trigonometric
polynomials according to the method of least squares with respect to the variable ¢ with fixed values of v
at the nodes of the grid Q. In this connection a table of values was obtained at the nodes of this grid for each
ag, from which an interpolative polynomial is constructed.

The most stable convergence is observed if one successively assigns the values 1, 2,...to M and
achieves convergence of the iterative process for each specified M. The application at the nodes of the grid
Q of the Aitken—Steffensen transformation (8-transformation) often gives a large effect [11].

The problem of finding values of Hy, where H, is the critical value for H corresponding to the onset
of the origin of a stagnation zone, depending on the value of the quantity €, was also posed in the research.
When H = Hy at the stagnation point of the stagnation zone X, = {r = R+ &, ¢ = 7}, we have v% + V2 /1% =
0, and v, <0 at all the rest of the points of the flow [9]. These conditions should be satisfied for the approx-
imate solution, i.e., v(X4) = 0. Then the Jacobian of the transformation (2.1) vanishes at the point Xx,
and Eq. (2.2) has a singularity. Due to this fact some changes are introduced into the solution procedure. In
the problem (2.2) and (2.3) we make a replacement of variables which is the inverse of the replacement (2.1),
0= o, r=11(¢ r), and we obtain the following boundary-value problem:

§op . & 2
.
d = — - ¢ =9 = % n =3 of P : ¢3
o et 2T - 5 2888 Bl T2 S
S D - R N g =0, (3.6)
B+ v 82+ i)
r r> r ! r2

Vlr=ro@» = 1, v'T=Rx((P‘ =0.

This problem is equivalent to the problem (2.2) and (2.3). We solve it at all the nodes of the grid W
with the exception of the node ¢ = 7. The differential equation of the problem (3.6) has the form

\,

s o1 ',Eq)w 1 g(IJ‘D ! —
erﬁ*-;‘(r—«;r-x'*i)vr"ﬁ;(‘rgﬁ*i)wQ 8.7

at ¢ = 7.
Eq. (1.5) has the form

P r

Y Ur 1 U(
H(vrr +4'3§+7)——<,%1‘_"+1) = 0.
at ¢ = 7. Let us assume that this equation is true for the approximate solution

H(;”--:~%’+f;>—i(§§’+l)zo.

"
Taking account of the latter equation, we transform Eq. (3.7) and solve the problem
y g g, . Ep g,
l/rr'TH(grr‘i“‘:TQ‘}‘T)vr_err“"’rf;’—‘")’_“:()v (3.8)
v|r=1 = 17 vlr=R+B = O'
at ¢ = 7 instead of the problem (3.6).

In this case we use for smoothing the representation of the approximate solution

M
S (r, ) = B (r, @) + ]é ay (2) cos (k) . (3.9)
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where t = [r = Rg(¢)1/[R1(®) — Ry(®)], which we find in advance in the form of a table at the nodes of a
uniform grid Q; = {(tk, 0i), e =khy, 0 sk =Np, ¢ = ihy, 0 =i = N }. The calculations according to the
scheme (3.6), (3.8), and (3.9) are more intuitive but less stable than in the case discussed earlier. The prob-
lem (3.8) does not have a singularity at H = Hx.

We will find the value of H in the following way. We select some H; such that Hy > Hy, ie., for H =
Hy, £y <0 everywhere in the flow region. We find an approximate solution of the problem v(r, ¢) for H =
Hg, and using the representation (3.9), we set

v,(X,) = 0. (3.10)
We find H, from (3.10) and seek the solution of the problem at H = H;. In this connection the solution
obtained for H = H; is taken as the zeroth approximation, and thus we proceed to the next iteration.

4. For comparison the problem (1.5) and (1.6) is also solved by the small-parameter method. We take
the quantity € as the small parameter and seek the solution in the form :

v o= pyr, ¢) +- en(r, L) I “.1)

All the quantities which enter into (1.5) and (1.6) are expahded in this parameter into a power series, and we
group the terms by identical powers of €. The boundary conditions (1.6) give the following conditions for the
functions vy and vy;
va(l ) = 1} e =0 ,
1 v «
v (R, q)=0 vy (R, @) = 52 (R, ¢)cos ()

Solving the corresponding boundary-value problems for ordinary differential equations, we obtain to an
accuracy of € in the first order :

r—1, nH—1 Inr ) g r E—r )
Ve T { ——(T— + 1)m -+ a(clrlv (l, 1, 3, f) +e¢, - ) cos (o), 4.2)
- H—1 . . < zt
E- Y F(1, 1.3, 2) =1+ I:z_l (b - ik +2)°
(B — 1y (E— 1) 1
€ 1 T H?
- . « 2 ~ 3 t
(E— Ik (1. 1, 3, 7;.)—1: (E—1) F (1, 1, 3, 7—)

. ~ 1
(Jt—I)F (‘1, 1, 3, -L_) 1

€y ==

_ ) L 1 , Ry H°
(k— 1t F (1, 1, 3, ?)_m (& —1)F(1, 1, 3, F)

Eq. (4.2) gives an approximate solution of the original problem. The condition for the development of a
stagnation zone vy (Xx) = 0 leads to an equation for the determination of Hy

R—E E . B\ ¢R ./ R Ey\
_ﬁ_ﬂ_—{—e(?;;—cll' (-1, 1, 3,F)—_;TF’(1, 1,3,-1—5.-)—}-0.3—1—{—2—)—0,

where
F'{l, 1,3, 2) = dF(1, 1, 3, z)/dz.

Some of the results obtained with R = 2, M = 2-3, N; = 8, Ny = 12, and h, = 1/64 are given in Tables
1-3. The calculations in Tables 1 and 2 were carried out for H = 10; vy and vy are the terms of the expan-
sion in Eq. (4.1); v is the solution corresponding to a single iteration without subsequent smoothing; and v
is the limiting value of the solution. The quantities H% and HY in Table 3 are found by the small parameter
method with one and two terms in the expansion (4.1), respectively. With € = 0.1 we take (3.2) as the zeroth
approximation. Then setting M successively equal to 1 and 2 in (3.5), we make the 62 transformation one at
a time. We take the solution obtained as the zeroth approximation for € = 0.3, and we perform a single o?
transformation for M = 2, 3. Setting M = 2 in the solution found, we take it as the zeroth approximation for
€ = 0.5 and again perform a single 6% transformation for M = 2, 8. We similarly obtain a solution for € =
0.7 and € = 1. Since it is necessary to perform two simple iterations in order to accomplish the 5% trans-
formation, it is sufficient for obtaining the results given in Tables 1 and 2 according to the procedure ex-
pounded above to make four simple iterations for each e.
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TABILE 1

TN 0 l 45 90 133 180
I 0,45534 0,44147 0,40774 0,37369 0,35950
5 0,42039 0,41609 0,40774 0,40241 0.40113
i) 0,41620 0,41332 0,40641 0,30959 0,39680
v 0,41608 0,41323 0,40641 0,39968 (1,39692
TABLE 2
N 0 &5 90 133 180
0.3 ! v, | 0,4748 0,4531 0,4174 04000 0,4145
v 0,43495 0,42615 0,40535 0.38536 0.37738
05 0,4536 0,4385 0,4031 (.3701 0,3574
0,7 0,4722 0,4504 0,3996 0.3537 0,3369
i — 0,467 0,391 0,326 0,305
TABLE 3
{
e 0.1 0,3 0.5 0T ] 1
i, 0,464 0,640 0,863 1,150 1,63
J/44 0,386 0,386
ut 0,472 0,777

The example considered shows that the iterative method proposed in [1, 2] proves fo be sufficiently ef-

fective for the solution of the problems of the antiplanar strain of a viscoplastic medium under conditions of
pure shear for different values of the parameters which enter into the problem.

1.

10.

11.
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